Automatic image analysis and morphology of fibre reinforced concrete.pdf
Automatic image analysis and morphology of
fibre reinforced concrete
Carl Redon, Liliane Chermant, Jean-Louis Chermant, Michel Coster
Abstract:
Automatic image analysis is an efficient tool to quantify the morphology of materials. Moreover, it can aid to understand their mechanical behaviour. Several applications of automatic methods are presented to investigate concrete reinforced by ribbon shaped amorphous cast iron fibres. Introducing ribbons into the plain matrix entrapped air voids. This affected the workability and, later on, the compressive strength of the fibre reinforced concrete (FRC). Both were improved by additions of superplasticizer in order to keep the water to cement ratio constant. The influence of the superplasticizer and fibre contents on the compactness of the FRC was characterized by the dimensional and the spatial distributions of the air voids. The orientations of fibres and microcracks were quantified by Fourier image transforms. Due to the casting procedure of the FRC, the fibres were located in "horizontal layers'', perpendicular to the casting axis. Whatever the direction of compression with respect to the layers of fibres, the microcrack network was getting more and more oriented in the direction of compression as stresses increased. The analysis of fibre and microcrack orientations suggests that, under uniaxial compression, the inelastic strain domain should be characterized by an anisotropic biaxial damage model, whose principal axes are the orthogonal and parallel directions to the layers of fibres. ©1999 Published by Elsevier Science Ltd. All rights reserved.